
MIDIUtil Documentation
Release 0.919

Mark Conway Wirt

September 26, 2016

Contents

1 Creating the MIDIFile Object 1

2 Common Events and Function 3

3 Tuning and Micro-tonalities 7

4 Extending the Library 11

5 Class Reference 15

6 Introduction 19

7 Installation 21

8 Quick Start 23

9 Thank You 25

10 Indices and tables 27

i

ii

CHAPTER 1

Creating the MIDIFile Object

The first step in using the library is creating a MIDIFile object. There are only a few parameters that need be
specified, but they affect the functioning of the library, so it’s good to understand what they do.

The signature of of the MIDIFile __init__() function is as follows:

def __init__(self, numTracks=1, removeDuplicates=True,
deinterleave=True, adjust_origin=None):

where the paramters do the following:

1.1 numTracks

numTracks specifies the number of tracks the MIDI file should have. It should be set to at least 1 (after all, a MIDI
file without tracks isn’t very useful), but it may be set higher for a multi-track file.

This parameter defaults to 1.

1.2 removeDuplicates

If set to True (the default), duplicate notes will be removed from the file. This is done on a track-by-track basis.

Notes are considered duplicates if they occur at the same time, and have equivalent pitch, and MIDI channel. If set to
False no attempt is made to remove notes which appear to be duplicates.

removeDuplicates() also attempts to remove other kinds of duplicates. For example, if there are two tempo
events at the same time and same tempo, they are considered duplicates.

Of course, it’s best not to insert duplicate events in the first place, but this could be unavoidable in some instances –
for example, if the software is used in the creation of Generative Music using an algorithm that can create duplication
of events.

1.3 deinterleave

If deinterleave is set to True (the default), an attempt will be made to remove interleaved notes.

To understand what an interleaved note is, it is useful to have some understanding of the MIDI standard.

To make this library more human-centric, one of the fundamental concepts used is that of the note. But the MIDI
standard doesn’t have notes; instead, it has note on and note off events. These are correlated by channel and pitch.

1

https://en.wikipedia.org/wiki/Generative_music

MIDIUtil Documentation, Release 0.919

So if, for example, you create two notes of duration 1 and separated by 1/2 of a beat, ie:

time = 0
duration = 1
MyMIDI.addNote(track,channel,pitch,time,duration,volume)
time = 0.5
MyMIDI.addNote(track,channel,pitch,time,duration,volume)

you end up with a note on event at 0, another note on event a 0.5, and two note off events, one at 1.0 and one at 1.5.
So when the first note off event is processed it raises the question: which note on event does it correspond to? The
channel and pitch are the same, so there is some ambiguity in the way that a hardware or software instrument will
respond.

if deinterleave is True the library tries to disambiguate the situation by shifting the first note’s off event to be
immediately before the second note’s on event. Thus in the example above the first note on would be at 0, the first note
off would be at 0.5, the second note on would also be at 0.5 (but would be processed after the note off at that time),
and the last note off would be at 1.5.

If this parameter is set to False no events will be shifted.

1.4 adjust_origin

If adjust_origin is True the library will find the earliest event in all the tracks and shift all events so that that
time is t=0. If it is False no time-shifting will occur.

If it is left at it’s default value, None, adjust_origin will be set to True and a FutureWarning will be
displayed. This is because in the next release the default behavior will change and no adjustment will be performed
by default.

2 Chapter 1. Creating the MIDIFile Object

CHAPTER 2

Common Events and Function

This page lists some of the more common things that a user is likely to do with the MIDI file. It is not exhaustive; see
the class reference for a more complete list of public functions.

2.1 Adding Notes

As the MIDI standard is all about music, creating notes will probably be the lion’s share of what you’re doing. This is
done with the addNote() function.

MIDIFile.addNote(track, channel, pitch, time, duration, volume, annotation=None)

addNote(self, track, channel, pitch, time, duration, volume, annotation=None)
Add notes to the MIDIFile object

Parameters

• track – The track to which the note is added.

• channel – the MIDI channel to assign to the note. [Integer, 0-15]

• pitch – the MIDI pitch number [Integer, 0-127].

• time – the time (in beats) at which the note sounds [Float].

• duration – the duration of the note (in beats) [Float].

• volume – the volume (velocity) of the note. [Integer, 0-127].

• annotation – Arbitrary data to attach to the note.

The annotation parameter attaches arbitrary data to the note. This is not used in the code, but can be
useful anyway. As an example, I have created a project that uses MIDIFile to write csound orchestra files
directly from the class EventList.

As an example, the following code-fragment adds two notes to an (already created) MIDIFile object:

track = 0 # Track numbers are zero-origined
channel = 0 # MIDI channel number
pitch = 60 # MIDI note number
time = 0 # In beats
duration = 1 # In beats
volume = 100 # 0-127, 127 being full volume

MyMIDI.addNote(track,channel,pitch,time,duration,volume)

3

http://csound.github.io/

MIDIUtil Documentation, Release 0.919

time = 1
pitch = 61
MyMIDI.addNote(track,channel,pitch,time,duration,volume)

2.2 Add a Tempo

Every track can have tempos specified (the unit of which is beats per minute).

MIDIFile.addTempo(track, time, tempo)

addTempo(self, track, time, tempo)
Add notes to the MIDIFile object

Parameters

• track – The track to which the tempo event is added.

• time – The time (in beats) at which tempo event is placed

• tempo – The tempo, in Beats per Minute. [Integer]

Example:

track = 0
time = 0 # beats, beginning of track
tempo = 120 # BPM
MyMIDI.addTempo(track, time, tempo)

2.3 Assign a Name to a Track

MIDIFile.addTrackName(track, time, trackName)

addTrackName(self, track, time, trackName)
Name a track.

Parameters

• track – The track to which the name is assigned.

• time – The time (in beats) at which the track name event is placed. In general this should
probably be time 0 (the beginning of the track).

• trackName – The name to assign to the track [String]

In general, the time should probably be t=0

Example:

track = 0
time = 0
track_name = "Bassline 1"
MyMIDI.addTrackName(track, time, track_name)

4 Chapter 2. Common Events and Function

MIDIUtil Documentation, Release 0.919

2.4 Adding a Program Change Event

The program change event tells the the instrument what voice a certain track should sound. As an example, if the
instrument you’re using supports General MIDI, you can use the GM numbers to specify the instrument.

Important Note: Within this library program numbers are zero-origined (as they are on a byte-level within the MIDI
standard), but most of the documentation you will see is musician-centric, so they are usually given as one-origined.
So, for example, if you want to sound a Cello, you would use a program number of 42, not the 43 which is given in
the link above.

MIDIFile.addProgramChange(track, channel, time, program)

addProgramChange(self, track, channel, time, program)
Add a MIDI program change event.

Parameters

• track – The track to which program change event is added.

• channel – the MIDI channel to assign to the event. [Integer, 0-15]

• time – The time (in beats) at which the program change event is placed [Float].

• annotation – Arbitrary data to attach to the note.

• program – the program number. [Integer, 0-127].

Example:

track = 0
channel = 0
time = 8 # Eight beats into the composition
program = 42 # A Cello

MyMIDI.addProgramChange(track, channel, time, program)

2.5 Writing the File to Disk

Ultimately, you’ll need to write your data to disk to use it.

MIDIFile.writeFile(fileHandle)

writeFile(self, fileHandle)
Write the MIDI File.

Parameters fileHandle – A file handle that has been opened for binary writing.

Example:

with open("mymidifile.midi", 'wb') as output_file:
MyMIDI.writeFile(output_file)

2.6 Additional Public Function

The above list is not exhaustive. For example, the library includes methods to create arbitrary channel control events,
SysEx and Universal SysEx events, Registered Parameter calls and Non-Registered Parameter calls, etc. Please see

2.4. Adding a Program Change Event 5

https://www.midi.org/specifications/item/gm-level-1-sound-set

MIDIUtil Documentation, Release 0.919

the Class Reference for a more complete list of public functions.

6 Chapter 2. Common Events and Function

CHAPTER 3

Tuning and Micro-tonalities

One of my interests is microtonalities/non-standard tunings, so support for such explorations has been included in the
library.

There are several ways that tuning data can be specified in the MIDI standard, two of the most common being note
pitch-bend and bulk tuning dumps. In this library I have implemented the real-time change note tuning of the MIDI
tuning standard. I chose that as a first implementation because most of the soft-synthesizers I use support this standard.

Note, however, that implementation of the MIDI tuning standard is somewhat spotty, so you may want to verify that
your hardware and/or software supports it before you spend too much time.

The main function to support a tuning change is changeNoteTuning.

MIDIFile.changeNoteTuning(track, tunings, sysExChannel=127, realTime=True, tuningProgam=0)

changeNoteTuning(self, track, tunings, sysExChannel=0x7F, realTime=True, tuningProgam=0):
Add a real-time MIDI tuning standard update to a track.

Parameters

• track – The track to which the tuning is applied.

• tunings – A list to tuples representing the tuning. See below for an explanation.

• sysExChannel – The SysEx channel of the event. This is mapped to “manufacturer ID”
in the event which is written. Unless there is a specific reason for changing it, it should be
left at its default value.

• realTime – Speicifes if the Universal SysEx event should be flagged as real-time or
non-real-time. As with the sysExChannel argument, this should in general be left at
it’s default value.

• tuningProgram – The tuning program number.

This function specifically implements the “real time single note tuning change” (although the name is
misleading, as multiple notes can be included in each event). It should be noted that not all hardware or
software implements the MIDI tuning standard, and that which does often does not implement it in its
entirety.

The tunings argument is a list of tuples, in (note number, frequency) format. As an example, if one
wanted to change the frequency on MIDI note 69 to 500 (it is normally 440 Hz), one could do it thus:

from midiutil.MidiFile import MIDIFile
MyMIDI = MIDIFile(1)
tuning = [(69, 500)]
MyMIDI.changeNoteTuning(0, tuning, tuningProgam=0)

7

MIDIUtil Documentation, Release 0.919

3.1 Tuning Program

With some instruments, such as timidity, this is all you need to do: timidity will apply the tuning change to the notes.
Other instruments, such as fluidsynth, require that the tuning program be explicitly assigned. This is done with the
changeTuningProgram function:

MIDIFile.changeTuningProgram(track, channel, time, program)

changeTuningProgram(self, track, channel, time, program)
Change the tuning program for a selected track

Parameters

• track – The track to which the data should be written

• channel – The channel for the events

• time – The time of the events

• program – The tuning program number (0-127)

Note that this is a convenience function, as the same functionality is available from directly sequencing
controller events.

The specified tuning should already have been written to the stream with changeNoteTuning.

3.2 Tuning Bank

The tuning bank can also be specified (fluidsynth assumes that any tuning you transmit via changeNoteTuning is
assigned to bank zero):

MIDIFile.changeTuningBank(track, channel, time, bank)

changeTuningBank(self, track, channel, time, bank)
Change the tuning bank for a selected track

Parameters

• track – The track to which the data should be written

• channel – The channel for the events

• time – The time of the events

• bank – The tuning bank (0-127)

Note that this is a convenience function, as the same functionality is available from directly sequencing
controller events.

The specified tuning should already have been written to the stream with changeNoteTuning.

3.3 An Example

So, as a complete example, the following code fragment would get rid of that pesky 440 Hz A and tell the instrument
to use the tuning that you just transmitted:

8 Chapter 3. Tuning and Micro-tonalities

http://timidity.sourceforge.net/
http://www.fluidsynth.org/

MIDIUtil Documentation, Release 0.919

track = 0
channel = 0
tuning = [(69, 500)]
program = 0
bank = 0
time = 0
MyMIDI.changeNoteTuning(track, tuning, tuningProgam=program)
MyMIDI.changeTuningBank(track, channel, time, bank) # may or may not be needed
MyMIDI.changeTuningProgram(track, channel, time, program) # ditto

3.4 To Do

• Implement the tuning change with bank select event type.

3.4. To Do 9

MIDIUtil Documentation, Release 0.919

10 Chapter 3. Tuning and Micro-tonalities

CHAPTER 4

Extending the Library

The choice of MIDI event types included in the library is somewhat idiosyncratic; I included the events I needed for
another software project I was wrote. You may find that you need additional events in your work. For this reason I
am including some instructions on extending the library. The process isn’t too hard (provided you have a working
knowledge of Python and the MIDI standard), so the task shouldn’t present a competent coder too much difficulty.
Alternately (if, for example, you don’t have a working knowledge of MIDI and don’t desire to gain it), you can submit
new feature requests to me, and I will include them into the development branch of the code, subject to the constraints
of time.

To illustrate the process I show below how the MIDI tempo event is incorporated into the code. This is a relatively
simple event, so while it may not illustrate some of the subtleties of MIDI programing, it provides a good, illustrative
case.

4.1 Create a New Event Type

The first order of business is to create a new subclass of the GnericEvent object of the MIDIFile module. This subclass
initializes any specific instance data that is needed for the MIDI event to be written. In the case of the tempo event, it
is the actual tempo (which is defined in the MIDI standard to be 60000000 divided by the tempo in beats per minute).
This class should also call the superclass’ initializer with the event time, ordinal, and insertion order, and set the event
type (a unique string used internally by the software). In the case of the tempo event:

class Tempo(GenericEvent):
'''A class that encapsulates a tempo meta-event
'''
def __init__(self,time,tempo, ordinal=3, insertion_order=0):

self.tempo = int(60000000 / tempo)
super(Tempo, self).__init__('tempo', time, ordinal, insertion_order)

Any class that you define should include a type, time, ordinal (see below), and an insertion order.

self.ord and self.insertion_order are used to order the events in the MIDI stream. Events are first ordered
in time. Events at the same time are then ordered by self.ord, with lower numbers appearing in the stream first.
The extant classes in the code all allow the user to specify an ordinal for the object, but they include default values that
are meant to be reasonable.

Lastly events are sorted on the self.insertion_order member. This makes it possible to, say, create a Regis-
tered Parameter Number call from a collection of Control Change events. Since all the CC events will have the same
time and class (and therefore default ordinal), you can control the order of the events by the order to such you add
them to the MIDIFile.

Next, if you want the code to be able to de-duplicate events with may lay over top of one another, the parent class,
GenericEvent, has a member function called __eq__(). If two events do not coincide in time or type they are

11

MIDIUtil Documentation, Release 0.919

not equal, but it they do the __eq__ function must be modified to show equality. In the case of the Tempo class, two
tempo events are considered equivalent if they are the same tempo. In other words, if there are two tempo events at
the same time and the same tempo, one will be removed in the de-duplication process (which is the default behavious
for MIDIFile, but it can be turned off). From GenericEvent.__eq__():

if self.type == 'tempo':
if self.tempo != other.tempo:

return False

If events are equivalent, the code should return False. If they are not equivalent no return should be called.

4.2 Create an Accessor Function

Next, an accessor function should be added to MIDITrack to create an event of this type. Continuing the example of
the tempo event:

def addTempo(self,time,tempo, insertion_order=0):
'''
Add a tempo change (or set) event.
'''
self.eventList.append(Tempo(time,tempo, insertion_order = insertion_order))

(Most/many MIDI events require a channel specification, but the tempo event does not.)

The public accessor function is via the MIDIFile object, and must include the track number to which the event is
written. So in MIDIFile:

def addTempo(self,track, time,tempo):
self.tracks[track].addTempo(time,tempo, insertion_order = self.event_counter)
self.event_counter = self.event_counter + 1

Note that a track has been added (which is zero-origined and needs to be constrained by the number of tracks that the
MIDIFile was created with), and insertion_order is taken from the class event_counter data member.
This should be followed in each function you add.

This is the function you will use in your code to create an event of the desired type.

4.3 Modify processEventList()

Next, the logic pertaining to the new event type should be added to processEventList() function of the
MIDITrack class. In general this code will create a MIDIEvent object and set its type, time, ordinality, and any
specific information that is needed for the event type. This object is then added to the MIDIEventList.

The relevant section for the tempo event is:

elif thing.type == 'tempo':
event = MIDIEvent("Tempo", thing.time * TICKSPERBEAT, thing.ord, thing.insertion_order)
event.tempo = thing.tempo
self.MIDIEventList.append(event)

THe MIDIEvent class is expected to have a type, time (which should be converted from beats to ticks as above),
ordinal, and an insertion order, which are similar to the values in the GenericEvent class. You are free, of course,
to add any other data items that need to be specified. In the case of Tempo this is the tempo to be written.

12 Chapter 4. Extending the Library

MIDIUtil Documentation, Release 0.919

4.4 Write the Event Data to the MIDI Stream

The last step is to modify the MIDIFile.writeEventsToStream() function; here is where some understanding
of the MIDI standard is necessary. The following code shows the creation of a MIDI tempo event:

elif event.type == "Tempo":
code = 0xFF
subcode = 0x51
fourbite = struct.pack('>L', event.tempo)
threebite = fourbite[1:4] # Just discard the MSB
varTime = writeVarLength(event.time)
for timeByte in varTime:

self.MIDIdata = self.MIDIdata + struct.pack('>B',timeByte)
self.MIDIdata = self.MIDIdata + struct.pack('>B',code)
self.MIDIdata = self.MIDIdata + struct.pack('>B',subcode)
self.MIDIdata = self.MIDIdata + struct.pack('>B', 0x03)
self.MIDIdata = self.MIDIdata + threebite

The event.type string (“Tempo”) was the one chosen in the processEventList logic.

The code and sub-code are binary values that come from the MIDI specification.

Next the data is packed into a three byte structure (or a four byte structure, discarding the most significant byte). Again,
the MIDI specification determines the number of bytes used in the data payload.

All MIDI events begin with a time, which is stored in a slightly bizarre variable-length format. This time should be
converted to MIDI variable-length data with the writeVarLength() function before writing to the stream. In the
MIDI standard’s variable length data only seven bits of a word are used to store data; the eighth bit signifies if more
bytes encoding the value follow. The total length may be 1 to 3 bytes, depending upon the size of the value encoded.
The writeVarLength() function takes care of this conversion for you.

Now the data is written to the binary object self.MIDIdata, which is the actual MIDI-encoded data stream. As
per the MIDI standard, first we write our variable-length time value. Next we add the event type code and sub-code.
Then we write the length of the data payload, which in the case of the tempo event is three bytes. Lastly, we write the
actual payload, which has been packed into the variable threebite.

The reason that there are separate classes for GenericEvent and MIDIEvent is that there need not be
a one-to-one correspondance. For example, the code defines a Note object, but when this is processed in
processEventList() two MIDIEvent objects are created, one for the note on event, one for the note
off event.

if thing.type == 'note':
event = MIDIEvent("NoteOn", thing.time * TICKSPERBEAT,

thing.ord, thing.insertion_order)
event.pitch = thing.pitch
event.volume = thing.volume
event.channel = thing.channel
self.MIDIEventList.append(event)

event = MIDIEvent("NoteOff", (thing.time+ thing.duration) * TICKSPERBEAT,
thing.ord -0.1,
thing.insertion_order)

event.pitch = thing.pitch
event.volume = thing.volume
event.channel = thing.channel
self.MIDIEventList.append(event)

Note that the NoteOff event is created with a slightly lower ordinality than the NoteOn event. This is so that at any
given time the note off events will be processed before the note on events.

4.4. Write the Event Data to the MIDI Stream 13

MIDIUtil Documentation, Release 0.919

4.5 Write Some Tests

Yea, it’s a hassle, but you know it’s the right thing to do!

14 Chapter 4. Extending the Library

CHAPTER 5

Class Reference

class midiutil.MidiFile.MIDIFile(numTracks=1, removeDuplicates=True, deinterleave=True, ad-
just_origin=None)

A class that encapsulates a full, well-formed MIDI file object.

This is a container object that contains a header (MIDIHeader), one or more tracks (class:MIDITrack), and
the data associated with a proper and well-formed MIDI file.

addControllerEvent(track, channel, time, controller_number, parameter)

addControllerEvent(self, track, channel, time, controller_number, parameter)
Add a channel control event

Parameters
• track – The track to which the event is added.
• channel – the MIDI channel to assign to the event. [Integer, 0-15]
• time – The time (in beats) at which the event is placed [Float].
• controller_number – The controller ID of the event.
• parameter – The event’s parameter, the meaning of which varies by event type.

addNote(track, channel, pitch, time, duration, volume, annotation=None)

addNote(self, track, channel, pitch, time, duration, volume, annotation=None)
Add notes to the MIDIFile object

Parameters
• track – The track to which the note is added.
• channel – the MIDI channel to assign to the note. [Integer, 0-15]
• pitch – the MIDI pitch number [Integer, 0-127].
• time – the time (in beats) at which the note sounds [Float].
• duration – the duration of the note (in beats) [Float].
• volume – the volume (velocity) of the note. [Integer, 0-127].
• annotation – Arbitrary data to attach to the note.

The annotation parameter attaches arbitrary data to the note. This is not used in the code, but
can be useful anyway. As an example, I have created a project that uses MIDIFile to write csound
orchestra files directly from the class EventList.

addProgramChange(track, channel, time, program)

addProgramChange(self, track, channel, time, program)
Add a MIDI program change event.

Parameters
• track – The track to which program change event is added.

15

http://csound.github.io/

MIDIUtil Documentation, Release 0.919

• channel – the MIDI channel to assign to the event. [Integer, 0-15]
• time – The time (in beats) at which the program change event is placed [Float].
• annotation – Arbitrary data to attach to the note.
• program – the program number. [Integer, 0-127].

addSysEx(track, time, manID, payload)

addSysEx(self, track, time, manID, payload)
Add a System Exclusive event.

Parameters
• track – The track to which the event should be written
• time – The time of the event.
• manID – The manufacturer ID for the event
• payload – The payload for the event. This should be a binary-packed value, and will

vary for each type and function.
Note: This is a low-level MIDI function, so care must be used in constructing the payload. It is
recommended that higher-level helper functions be written to wrap this function and construct the
payload if a developer finds him or herself using the function heavily.

addTempo(track, time, tempo)

addTempo(self, track, time, tempo)
Add notes to the MIDIFile object

Parameters
• track – The track to which the tempo event is added.
• time – The time (in beats) at which tempo event is placed
• tempo – The tempo, in Beats per Minute. [Integer]

addTrackName(track, time, trackName)

addTrackName(self, track, time, trackName)
Name a track.

Parameters
• track – The track to which the name is assigned.
• time – The time (in beats) at which the track name event is placed. In general this

should probably be time 0 (the beginning of the track).
• trackName – The name to assign to the track [String]

addUniversalSysEx(track, time, code, subcode, payload, sysExChannel=127, realTime=False)

addUniversalSysEx(self, track, time, code, subcode, payload, sysExChannel=0x7F, real-
Time=False)

Add a Univeral System Exclusive event.
Parameters

• track – The track to which the event should be written
• time – The time of the event, in beats.
• code – The event code. [Integer]
• subcode – The event sub-code [Integer]
• payload – The payload for the event. This should be a binary-packed value, and will

vary for each type and function.
• sysExChannel – The SysEx channel.
• realTime – Sets the real-time flag. Defaults to non-real-time.
• manID – The manufacturer ID for the event

16 Chapter 5. Class Reference

MIDIUtil Documentation, Release 0.919

Note: This is a low-level MIDI function, so care must be used in constructing the payload. It is
recommended that higher-level helper functions be written to wrap this function and construct the
payload if a developer finds him or herself using the function heavily. As an example of such a helper
function, see the changeNoteTuning() function, which uses the event to create a real-time note
tuning update.

changeNoteTuning(track, tunings, sysExChannel=127, realTime=True, tuningProgam=0)

changeNoteTuning(self, track, tunings, sysExChannel=0x7F, realTime=True, tuningProgam=0):
Add a real-time MIDI tuning standard update to a track.

Parameters
• track – The track to which the tuning is applied.
• tunings – A list to tuples representing the tuning. See below for an explanation.
• sysExChannel – The SysEx channel of the event. This is mapped to “manufacturer

ID” in the event which is written. Unless there is a specific reason for changing it, it
should be left at its default value.

• realTime – Speicifes if the Universal SysEx event should be flagged as real-time or
non-real-time. As with the sysExChannel argument, this should in general be left at
it’s default value.

• tuningProgram – The tuning program number.
This function specifically implements the “real time single note tuning change” (although the name is
misleading, as multiple notes can be included in each event). It should be noted that not all hardware
or software implements the MIDI tuning standard, and that which does often does not implement it in
its entirety.

The tunings argument is a list of tuples, in (note number, frequency) format. As an example, if one
wanted to change the frequency on MIDI note 69 to 500 (it is normally 440 Hz), one could do it thus:

from midiutil.MidiFile import MIDIFile
MyMIDI = MIDIFile(1)
tuning = [(69, 500)]
MyMIDI.changeNoteTuning(0, tuning, tuningProgam=0)

changeTuningBank(track, channel, time, bank)

changeTuningBank(self, track, channel, time, bank)
Change the tuning bank for a selected track

Parameters
• track – The track to which the data should be written
• channel – The channel for the events
• time – The time of the events
• bank – The tuning bank (0-127)

Note that this is a convenience function, as the same functionality is available from directly sequencing
controller events.

The specified tuning should already have been written to the stream with changeNoteTuning.

changeTuningProgram(track, channel, time, program)

changeTuningProgram(self, track, channel, time, program)
Change the tuning program for a selected track

Parameters
• track – The track to which the data should be written
• channel – The channel for the events
• time – The time of the events

17

MIDIUtil Documentation, Release 0.919

• program – The tuning program number (0-127)
Note that this is a convenience function, as the same functionality is available from directly sequencing
controller events.

The specified tuning should already have been written to the stream with changeNoteTuning.

makeNRPNCall(track, channel, time, controller_msb, controller_lsb, data_msb, data_lsb)

makeNRPNCall(self, track, channel, time, controller_msb, controller_lsb, data_msb, data_lsb)
Perform a Non-Registered Parameter Number Call

Parameters
• track – The track to which this applies
• channel – The channel to which this applies
• time – The time of the event
• controller_msb – The Most significant byte of the controller. In common usage

this will usually be 0
• controller_lsb – The least significant byte for the controller message. For exam-

ple, for a fine-tunning change this would be 01.
• data_msb – The most significant byte of the controller’s parameter.
• data_lsb – The least significant byte of the controller’s parameter. If none is needed

this should be set to None

makeRPNCall(track, channel, time, controller_msb, controller_lsb, data_msb, data_lsb)

makeRPNCall(self, track, channel, time, controller_msb, controller_lsb, data_msb, data_lsb)
Perform a Registered Parameter Number Call

Parameters
• track – The track to which this applies
• channel – The channel to which this applies
• time – The time of the event
• controller_msb – The Most significant byte of the controller. In common usage

this will usually be 0
• controller_lsb – The Least significant Byte for the controller message. For exam-

ple, for a fine-tuning change this would be 01.
• data_msb – The Most Significant Byte of the controller’s parameter.
• data_lsb – The Least Significant Byte of the controller’s parameter. If non needed

this should be set to None
As an example, if one were to change a channel’s tuning program:

makeRPNCall(track, channel, time, 0, 3, 0, program)

(Note, however, that there is a convenience function, changeTuningProgram, that does this for
you.)

writeFile(fileHandle)

writeFile(self, fileHandle)
Write the MIDI File.

Parameters fileHandle – A file handle that has been opened for binary writing.

18 Chapter 5. Class Reference

CHAPTER 6

Introduction

MIDIUtil is a pure Python library that allows one to write multi-track Musical Instrument Digital Interface (MIDI)
files from within Python programs. It is object-oriented and allows one to create and write these files with a minimum
of fuss.

MIDIUtil isn’t a full implementation of the MIDI specification. The actual specification is a large, sprawling document
which has organically grown over the course of decades. I have selectively implemented some of the more useful and
common aspects of the specification. The choices have been somewhat idiosyncratic; I largely implemented what I
needed. When I decided that it could be of use to other people I fleshed it out a bit, but there are still things missing.
Regardless, the code is fairly easy to understand and well structured. Additions can be made to the library by anyone
with a good working knowledge of the MIDI file format and a good, working knowledge of Python. Documentation
for extending the library is provided.

This software was originally developed with Python 2.5.2 and made use of some features that were introduced in 2.5.
More recently Python 2 and 3 support has been unified, so the code should work in both environments. However,
support for versions of Python previous to 2.6 has been dropped. I have verified correct functioning with Python 2.6.8,
but it is possible that it will work with earlier versions of 2.6.

This software is distributed under an Open Source license and you are free to use it as you see fit, provided that
attribution is maintained. See License.txt in the source distribution for details.

19

MIDIUtil Documentation, Release 0.919

20 Chapter 6. Introduction

CHAPTER 7

Installation

The code is available on Github, and be cloned with one of the following URLS:

git clone git@github.com:MarkCWirt/MIDIUtil.git
or
git clone https://github.com/MarkCWirt/MIDIUtil.git

depending on if you want to use SSH or HTTPS.

To use the library one can either install it on one’s system or copy the midiutil directory of the source distribution
to your project’s directory (or to any directory pointed to by the PYTHONPATH environment variable). The source
distribution can be downloaded, un-zipped (or un-tarred), and installed in the standard way:

python setup.py install

MIDIUtil is pure Python and should work on any platform to which Python has been ported.

If you do not wish to install in on your system, just copy the src/midiutil directory to your project’s directory or
elsewhere on your PYTHONPATH. If you’re using this software in your own projects you may want to consider
distributing the library bundled with yours; the library is small and self-contained, and such bundling makes things
more convenient for your users. The best way of doing this is probably to copy the midiutil directory directly to your
package directory and then refer to it with a fully qualified name. This will prevent it from conflicting with any version
of the software that may be installed on the target system.

21

MIDIUtil Documentation, Release 0.919

22 Chapter 7. Installation

CHAPTER 8

Quick Start

Using the software is easy:

• The package must be imported into your namespace

• A MIDIFile object is created

• Events (notes, tempo-changes, etc.) are added to the object

• The MIDI file is written to disk.

Detailed documentation is provided; what follows is a simple example to get you going quickly. In this example we’ll
create a one track MIDI File, assign a name and tempo to the track, add a one beat middle-C to the track, and write it
to disk.

#Import the library
from midiutil.MidiFile import MIDIFile

Create the MIDIFile Object with 1 track
MyMIDI = MIDIFile(1)

Tracks are numbered from zero. Times are measured in beats.
track = 0
time = 0

Add track name and tempo.
MyMIDI.addTrackName(track,time,"Sample Track")
MyMIDI.addTempo(track,time,120)

Add a note. addNote expects the following information:
track = 0 # We only have one track
channel = 0
pitch = 60 # MIDI note number
time = 0 # In beats
duration = 1 # In beats
volume = 100 # 0-127, 127 being full volume

Now add the note.
MyMIDI.addNote(track,channel,pitch,time,duration,volume)

And write it to disk.
binfile = open("output.mid", 'wb')
MyMIDI.writeFile(binfile)
binfile.close()

23

MIDIUtil Documentation, Release 0.919

There are several additional event types that can be added and there are various options available for creating the
MIDIFile object, but the above is sufficient to begin using the library and creating note sequences.

The above code is found in machine-readable form in the examples directory. A detailed class reference and docu-
mentation describing how to extend the library is provided in the documentation directory.

Have fun!

24 Chapter 8. Quick Start

CHAPTER 9

Thank You

I’d like to mention the following people who have given feedback, but fixes, and suggestions on the library:

• Bram de Jong

• Mike Reeves-McMillan

• Egg Syntax

• Nils Gey

• Francis G.

25

MIDIUtil Documentation, Release 0.919

26 Chapter 9. Thank You

CHAPTER 10

Indices and tables

• genindex

• search

27

MIDIUtil Documentation, Release 0.919

28 Chapter 10. Indices and tables

Index

A
addControllerEvent() (midiutil.MidiFile.MIDIFile

method), 15
addNote() (midiutil.MidiFile.MIDIFile method), 15
addProgramChange() (midiutil.MidiFile.MIDIFile

method), 15
addSysEx() (midiutil.MidiFile.MIDIFile method), 16
addTempo() (midiutil.MidiFile.MIDIFile method), 16
addTrackName() (midiutil.MidiFile.MIDIFile method),

16
addUniversalSysEx() (midiutil.MidiFile.MIDIFile

method), 16

C
changeNoteTuning() (midiutil.MidiFile.MIDIFile

method), 7, 17
changeTuningBank() (midiutil.MidiFile.MIDIFile

method), 8, 17
changeTuningProgram() (midiutil.MidiFile.MIDIFile

method), 8, 17

M
makeNRPNCall() (midiutil.MidiFile.MIDIFile method),

18
makeRPNCall() (midiutil.MidiFile.MIDIFile method), 18
MIDIFile (class in midiutil.MidiFile), 15
MIDIFile.addControllerEvent() (in module midiu-

til.MidiFile), 15
MIDIFile.addNote() (in module midiutil.MidiFile), 3, 15
MIDIFile.addProgramChange() (in module midiu-

til.MidiFile), 5, 15
MIDIFile.addSysEx() (in module midiutil.MidiFile), 16
MIDIFile.addTempo() (in module midiutil.MidiFile), 4,

16
MIDIFile.addTrackName() (in module midiu-

til.MidiFile), 4, 16
MIDIFile.addUniversalSysEx() (in module midiu-

til.MidiFile), 16
MIDIFile.changeTuningBank() (in module midiu-

til.MidiFile), 8, 17

MIDIFile.changeTuningProgram() (in module midiu-
til.MidiFile), 8, 17

MIDIFile.makeNRPNCall() (in module midiu-
til.MidiFile), 18

MIDIFile.makeRPNCall() (in module midiutil.MidiFile),
18

MIDIFile.writeFile() (in module midiutil.MidiFile), 5, 18

W
writeFile() (midiutil.MidiFile.MIDIFile method), 18

29

	Creating the MIDIFile Object
	Common Events and Function
	Tuning and Micro-tonalities
	Extending the Library
	Class Reference
	Introduction
	Installation
	Quick Start
	Thank You
	Indices and tables

