

 Navigation

 	
 index

 	
 next |

 	MIDIUtil 0.919 documentation

MIDIUtil

Introduction

MIDIUtil is a pure Python library that allows one to write multi-track
Musical Instrument Digital Interface (MIDI) files from within Python
programs. It is object-oriented and allows one to create and write these
files with a minimum of fuss.

MIDIUtil isn’t a full implementation of the MIDI specification. The actual
specification is a large, sprawling document which has organically grown
over the course of decades. I have selectively implemented some of the
more useful and common aspects of the specification. The choices have
been somewhat idiosyncratic; I largely implemented what I needed. When
I decided that it could be of use to other people I fleshed it out a bit,
but there are still things missing. Regardless, the code is fairly easy to
understand and well structured. Additions can be made to the library by
anyone with a good working knowledge of the MIDI file format and a good,
working knowledge of Python. Documentation for extending the library
is provided.

This software was originally developed with Python 2.5.2 and made use
of some features that were introduced in 2.5. More recently Python 2 and
3 support has been unified, so the code should work in both environments.
However, support for versions of Python previous to 2.6 has been dropped.
I have verified correct functioning with Python 2.6.8, but it is possible
that it will work with earlier versions of 2.6.

This software is distributed under an Open Source license and you are
free to use it as you see fit, provided that attribution is maintained.
See License.txt in the source distribution for details.

Installation

The code is available on Github, and be cloned with one of the following
URLS:

git clone git@github.com:MarkCWirt/MIDIUtil.git
or
git clone https://github.com/MarkCWirt/MIDIUtil.git

depending on if you want to use SSH or HTTPS.

To use the library one can either install it on one’s system or
copy the midiutil directory of the source distribution to your
project’s directory (or to any directory pointed to by the PYTHONPATH
environment variable). The source distribution can be downloaded,
un-zipped (or un-tarred), and installed in the standard way:

python setup.py install

MIDIUtil is pure Python and should work on any platform to which
Python has been ported.

If you do not wish to install in on your system, just copy the
src/midiutil directory to your project’s directory or elsewhere on
your PYTHONPATH. If you’re using this software in your own projects
you may want to consider distributing the library bundled with yours;
the library is small and self-contained, and such bundling makes things
more convenient for your users. The best way of doing this is probably
to copy the midiutil directory directly to your package directory and
then refer to it with a fully qualified name. This will prevent it from
conflicting with any version of the software that may be installed on
the target system.

Quick Start

Using the software is easy:

	The package must be imported into your namespace

	A MIDIFile object is created

	Events (notes, tempo-changes, etc.) are added to the object

	The MIDI file is written to disk.

Detailed documentation is provided; what follows is a simple example
to get you going quickly. In this example we’ll create a one track MIDI
File, assign a name and tempo to the track, add a one beat middle-C to
the track, and write it to disk.

#Import the library
from midiutil.MidiFile import MIDIFile

Create the MIDIFile Object with 1 track
MyMIDI = MIDIFile(1)

Tracks are numbered from zero. Times are measured in beats.
track = 0
time = 0

Add track name and tempo.
MyMIDI.addTrackName(track,time,"Sample Track")
MyMIDI.addTempo(track,time,120)

Add a note. addNote expects the following information:
track = 0 # We only have one track
channel = 0
pitch = 60 # MIDI note number
time = 0 # In beats
duration = 1 # In beats
volume = 100 # 0-127, 127 being full volume

Now add the note.
MyMIDI.addNote(track,channel,pitch,time,duration,volume)

And write it to disk.
binfile = open("output.mid", 'wb')
MyMIDI.writeFile(binfile)
binfile.close()

There are several additional event types that can be added and there are
various options available for creating the MIDIFile object, but the above
is sufficient to begin using the library and creating note sequences.

The above code is found in machine-readable form in the examples directory.
A detailed class reference and documentation describing how to extend
the library is provided in the documentation directory.

Have fun!

Thank You

I’d like to mention the following people who have given feedback, but
fixes, and suggestions on the library:

	Bram de Jong

	Mike Reeves-McMillan

	Egg Syntax

	Nils Gey

	Francis G.

Indices and tables

	Index

	Search Page

 Copyright 2016, Mark Conway Wirt.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MIDIUtil 0.919 documentation

Creating the MIDIFile Object

The first step in using the library is creating a MIDIFile object.
There are only a few parameters that need be specified, but they affect
the functioning of the library, so it’s good to understand what they do.

The signature of of the MIDIFile __init__() function is
as follows:

def __init__(self, numTracks=1, removeDuplicates=True,
 deinterleave=True, adjust_origin=None):

where the paramters do the following:

numTracks

numTracks specifies the number of tracks the MIDI file should have.
It should be set to at least 1 (after all, a MIDI file without tracks isn’t
very useful), but it may be set higher for a multi-track file.

This parameter defaults to 1.

removeDuplicates

If set to True (the default), duplicate notes will be removed from
the file. This is done on a track-by-track basis.

Notes are considered duplicates if they occur at the same time, and have
equivalent pitch, and MIDI channel. If set to False no attempt is made
to remove notes which appear to be duplicates.

removeDuplicates() also attempts to remove other kinds of duplicates. For
example, if there are two tempo events at the same time and same tempo, they
are considered duplicates.

Of course, it’s best not to insert duplicate events in the first place,
but this could be unavoidable in some instances – for example, if the software
is used in the creation of Generative Music [https://en.wikipedia.org/wiki/Generative_music]
using an algorithm that can create duplication of events.

deinterleave

If deinterleave is set to True (the default), an attempt will be made
to remove interleaved notes.

To understand what an interleaved note is, it is useful to have some understanding
of the MIDI standard.

To make this library more human-centric, one of the fundamental concepts used is
that of the note. But the MIDI standard doesn’t have notes; instead, it has
note on and note off events. These are correlated by channel and pitch.

So if, for example, you create two notes of duration 1 and separated by 1/2 of
a beat, ie:

time = 0
duration = 1
MyMIDI.addNote(track,channel,pitch,time,duration,volume)
time = 0.5
MyMIDI.addNote(track,channel,pitch,time,duration,volume)

you end up with a note on event at 0, another note on event a 0.5, and
two note off events, one at 1.0 and one at 1.5. So when the first note off
event is processed it raises the question: which note on event does it correspond to?
The channel and pitch are the same, so there is some ambiguity in the
way that a hardware or software instrument will respond.

if deinterleave is True the library tries to disambiguate the situation
by shifting the first note’s off event to be immediately before the second
note’s on event. Thus in the example above the first note on would be at 0,
the first note off would be at 0.5, the second note on would also be at
0.5 (but would be processed after the note off at that time), and the last
note off would be at 1.5.

If this parameter is set to False no events will be shifted.

adjust_origin

If adjust_origin is True the library will find the earliest
event in all the tracks and shift all events so that that time is t=0.
If it is False no time-shifting will occur.

If it is left at it’s default value, None, adjust_origin will be
set to True and a FutureWarning will be displayed. This is because in
the next release the default behavior will change and no adjustment will be
performed by default.

 Copyright 2016, Mark Conway Wirt.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MIDIUtil 0.919 documentation

Common Events and Function

This page lists some of the more common things that a user is likely to
do with the MIDI file. It is not exhaustive; see the class reference for a more
complete list of public functions.

Adding Notes

As the MIDI standard is all about music, creating notes will probably be
the lion’s share of what you’re doing. This is done with the addNote()
function.

	
MIDIFile.addNote(track, channel, pitch, time, duration, volume, annotation=None)

	
	
addNote(self, track, channel, pitch, time, duration, volume, annotation=None)

	Add notes to the MIDIFile object

	Parameters:	
	track – The track to which the note is added.

	channel – the MIDI channel to assign to the note. [Integer, 0-15]

	pitch – the MIDI pitch number [Integer, 0-127].

	time – the time (in beats) at which the note sounds [Float].

	duration – the duration of the note (in beats) [Float].

	volume – the volume (velocity) of the note. [Integer, 0-127].

	annotation – Arbitrary data to attach to the note.

The annotation parameter attaches arbitrary data to the note. This
is not used in the code, but can be useful anyway. As an example,
I have created a project that uses MIDIFile to write
csound [http://csound.github.io/] orchestra files directly from the
class EventList.

As an example, the following code-fragment adds two notes to an (already
created) MIDIFile object:

track = 0 # Track numbers are zero-origined
channel = 0 # MIDI channel number
pitch = 60 # MIDI note number
time = 0 # In beats
duration = 1 # In beats
volume = 100 # 0-127, 127 being full volume

MyMIDI.addNote(track,channel,pitch,time,duration,volume)
time = 1
pitch = 61
MyMIDI.addNote(track,channel,pitch,time,duration,volume)

Add a Tempo

Every track can have tempos specified (the unit of which is beats per minute).

	
MIDIFile.addTempo(track, time, tempo)

	
	
addTempo(self, track, time, tempo)

	Add notes to the MIDIFile object

	Parameters:	
	track – The track to which the tempo event is added.

	time – The time (in beats) at which tempo event is placed

	tempo – The tempo, in Beats per Minute. [Integer]

Example:

track = 0
time = 0 # beats, beginning of track
tempo = 120 # BPM
MyMIDI.addTempo(track, time, tempo)

Assign a Name to a Track

	
MIDIFile.addTrackName(track, time, trackName)

	
	
addTrackName(self, track, time, trackName)

	Name a track.

	Parameters:	
	track – The track to which the name is assigned.

	time – The time (in beats) at which the track name event is placed.
In general this should probably be time 0 (the beginning of the track).

	trackName – The name to assign to the track [String]

In general, the time should probably be t=0

Example:

track = 0
time = 0
track_name = "Bassline 1"
MyMIDI.addTrackName(track, time, track_name)

Adding a Program Change Event

The program change event tells the the instrument what voice a
certain track should sound. As an example, if the instrument you’re
using supports General MIDI [https://www.midi.org/specifications/item/gm-level-1-sound-set],
you can use the GM numbers to specify the instrument.

Important Note: Within this library program numbers are
zero-origined (as they are on a byte-level within the MIDI
standard), but most of the documentation you will see is
musician-centric, so they are usually given as one-origined. So, for example,
if you want to sound a Cello, you would use a program number of 42, not the
43 which is given in the link above.

	
MIDIFile.addProgramChange(track, channel, time, program)

	
	
addProgramChange(self, track, channel, time, program)

	Add a MIDI program change event.

	Parameters:	
	track – The track to which program change event is added.

	channel – the MIDI channel to assign to the event. [Integer, 0-15]

	time – The time (in beats) at which the program change event is placed [Float].

	annotation – Arbitrary data to attach to the note.

	program – the program number. [Integer, 0-127].

Example:

track = 0
channel = 0
time = 8 # Eight beats into the composition
program = 42 # A Cello

MyMIDI.addProgramChange(track, channel, time, program)

Writing the File to Disk

Ultimately, you’ll need to write your data to disk to use it.

	
MIDIFile.writeFile(fileHandle)

	
	
writeFile(self, fileHandle)

	Write the MIDI File.

	Parameters:	fileHandle – A file handle that has been opened for binary writing.

Example:

with open("mymidifile.midi", 'wb') as output_file:
 MyMIDI.writeFile(output_file)

Additional Public Function

The above list is not exhaustive. For example, the library includes methods
to create arbitrary channel control events, SysEx and Universal SysEx events,
Registered Parameter calls and Non-Registered Parameter calls, etc. Please see the
Class Reference for a more complete list of public functions.

 Copyright 2016, Mark Conway Wirt.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MIDIUtil 0.919 documentation

Tuning and Micro-tonalities

One of my interests is microtonalities/non-standard tunings, so support
for such explorations has been included in the library.

There are several ways that tuning data can be specified in the MIDI standard,
two of the most common being note pitch-bend and bulk tuning dumps. In this
library I have implemented the real-time change note tuning of the MIDI
tuning standard. I chose that as a first implementation because most of the
soft-synthesizers I use support this standard.

Note, however, that implementation of the MIDI tuning standard is somewhat spotty,
so you may want to verify that your hardware and/or software supports it before
you spend too much time.

The main function to support a tuning change is changeNoteTuning.

	
MIDIFile.changeNoteTuning(track, tunings, sysExChannel=127, realTime=True, tuningProgam=0)

	
	
changeNoteTuning(self, track, tunings, sysExChannel=0x7F, realTime=True, tuningProgam=0):

	Add a real-time MIDI tuning standard update to a track.

	Parameters:	
	track – The track to which the tuning is applied.

	tunings – A list to tuples representing the tuning. See below for an
explanation.

	sysExChannel – The SysEx channel of the event. This is mapped to “manufacturer ID”
in the event which is written. Unless there is a specific reason for changing it, it
should be left at its default value.

	realTime – Speicifes if the Universal SysEx event should be flagged as real-time or
non-real-time. As with the sysExChannel argument, this should in general
be left at it’s default value.

	tuningProgram – The tuning program number.

This function specifically implements the “real time single note tuning
change” (although the name is misleading, as multiple notes can be included in
each event). It should be noted that not all hardware or software implements the
MIDI tuning standard, and that which does often does not implement it in its
entirety.

The tunings argument is a list of tuples, in (note number, frequency) format.
As an example, if one wanted to change the frequency on MIDI note 69 to 500 (it is normally
440 Hz), one could do it thus:

from midiutil.MidiFile import MIDIFile
MyMIDI = MIDIFile(1)
tuning = [(69, 500)]
MyMIDI.changeNoteTuning(0, tuning, tuningProgam=0)

Tuning Program

With some instruments, such as timidity [http://timidity.sourceforge.net/], this
is all you need to do: timidity will apply the tuning change to the notes.
Other instruments, such as fluidsynth [http://www.fluidsynth.org/], require
that the tuning program be explicitly assigned. This is done with the
changeTuningProgram function:

	
MIDIFile.changeTuningProgram(track, channel, time, program)

	
	
changeTuningProgram(self, track, channel, time, program)

	Change the tuning program for a selected track

	Parameters:	
	track – The track to which the data should be written

	channel – The channel for the events

	time – The time of the events

	program – The tuning program number (0-127)

Note that this is a convenience function, as the same functionality is available
from directly sequencing controller events.

The specified tuning should already have been written to the stream with changeNoteTuning.

Tuning Bank

The tuning bank can also be specified (fluidsynth assumes that any tuning
you transmit via changeNoteTuning is assigned to bank zero):

	
MIDIFile.changeTuningBank(track, channel, time, bank)

	
	
changeTuningBank(self, track, channel, time, bank)

	Change the tuning bank for a selected track

	Parameters:	
	track – The track to which the data should be written

	channel – The channel for the events

	time – The time of the events

	bank – The tuning bank (0-127)

Note that this is a convenience function, as the same functionality is available
from directly sequencing controller events.

The specified tuning should already have been written to the stream with changeNoteTuning.

An Example

So, as a complete example, the following code fragment would get rid of that
pesky 440 Hz A and tell the instrument to use the tuning that you just
transmitted:

track = 0
channel = 0
tuning = [(69, 500)]
program = 0
bank = 0
time = 0
MyMIDI.changeNoteTuning(track, tuning, tuningProgam=program)
MyMIDI.changeTuningBank(track, channel, time, bank) # may or may not be needed
MyMIDI.changeTuningProgram(track, channel, time, program) # ditto

To Do

	Implement the tuning change with bank select event type.

 Copyright 2016, Mark Conway Wirt.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MIDIUtil 0.919 documentation

Extending the Library

The choice of MIDI event types included in the library is somewhat
idiosyncratic; I included the events I needed for another software
project I was wrote. You may find that you need additional events in
your work. For this reason I am including some instructions on extending
the library. The process isn’t too hard (provided you have a working
knowledge of Python and the MIDI standard), so the task shouldn’t present
a competent coder too much difficulty. Alternately (if, for example,
you don’t have a working knowledge of MIDI and don’t desire to gain it),
you can submit new feature requests to me, and I will include them into
the development branch of the code, subject to the constraints of time.

To illustrate the process I show below how the MIDI tempo event is
incorporated into the code. This is a relatively simple event, so while
it may not illustrate some of the subtleties of MIDI programing, it
provides a good, illustrative case.

Create a New Event Type

The first order of business is to create a new subclass of the GnericEvent
object of the MIDIFile module. This subclass initializes any specific
instance data that is needed for the MIDI event to be written. In
the case of the tempo event, it is the actual tempo (which is defined
in the MIDI standard to be 60000000 divided by the tempo in beats per
minute). This class should also call the superclass’ initializer with
the event time, ordinal, and insertion order, and set the event type
(a unique string used internally by the software).
In the case of the tempo event:

class Tempo(GenericEvent):
 '''A class that encapsulates a tempo meta-event
 '''
 def __init__(self,time,tempo, ordinal=3, insertion_order=0):
 self.tempo = int(60000000 / tempo)
 super(Tempo, self).__init__('tempo', time, ordinal, insertion_order)

Any class that you define should include a type, time, ordinal (see below),
and an insertion order.

self.ord and self.insertion_order are used to order the events
in the MIDI stream. Events are first ordered in time. Events at the
same time are then ordered by self.ord, with lower numbers appearing
in the stream first. The extant classes in the code all allow the user
to specify an ordinal for the object, but they include default values
that are meant to be reasonable.

Lastly events are sorted on the self.insertion_order member. This
makes it possible to, say, create a Registered Parameter Number call
from a collection of Control Change events. Since all the CC events will
have the same time and class (and therefore default ordinal), you can control
the order of the events by the order to such you add them to the MIDIFile.

Next, if you want the code to be able to de-duplicate events with may
lay over top of one another, the parent class, GenericEvent, has a
member function called __eq__(). If two events do not coincide in
time or type they are not equal, but it they do the __eq__ function
must be modified to show equality. In the case of the Tempo class,
two tempo events are considered equivalent if they are the same tempo.
In other words, if there are two tempo events at the same time and
the same tempo, one will be removed in the de-duplication process
(which is the default behavious for MIDIFile, but it can be
turned off). From GenericEvent.__eq__():

if self.type == 'tempo':
 if self.tempo != other.tempo:
 return False

If events are equivalent, the code should return False. If they are not
equivalent no return should be called.

Create an Accessor Function

Next, an accessor function should be added to MIDITrack to create an
event of this type. Continuing the example of the tempo event:

def addTempo(self,time,tempo, insertion_order=0):
 '''
 Add a tempo change (or set) event.
 '''
 self.eventList.append(Tempo(time,tempo, insertion_order = insertion_order))

(Most/many MIDI events require a channel specification, but the tempo event
does not.)

The public accessor function is via the MIDIFile object, and must include
the track number to which the event is written. So in MIDIFile:

def addTempo(self,track, time,tempo):
 self.tracks[track].addTempo(time,tempo, insertion_order = self.event_counter)
 self.event_counter = self.event_counter + 1

Note that a track has been added (which is zero-origined and needs to be
constrained by the number of tracks that the MIDIFile was created with),
and insertion_order is taken from the class event_counter
data member. This should be followed in each function you add.

This is the function you will use in your code to create an event of
the desired type.

Modify processEventList()

Next, the logic pertaining to the new event type should be added to
processEventList() function of the MIDITrack class. In general this code
will create a MIDIEvent object and set its type, time, ordinality, and
any specific information that is needed for the event type. This object
is then added to the MIDIEventList.

The relevant section for the tempo event is:

elif thing.type == 'tempo':
 event = MIDIEvent("Tempo", thing.time * TICKSPERBEAT, thing.ord, thing.insertion_order)
 event.tempo = thing.tempo
 self.MIDIEventList.append(event)

THe MIDIEvent class is expected to have a type, time
(which should be converted from beats to ticks as above), ordinal, and an
insertion order, which are similar to the values in the GenericEvent class.
You are free, of course, to add any other data items that need to be specified.
In the case of Tempo this is the tempo to be written.

Write the Event Data to the MIDI Stream

The last step is to modify the MIDIFile.writeEventsToStream() function;
here is where some understanding of the MIDI standard is necessary. The
following code shows the creation of a MIDI tempo event:

elif event.type == "Tempo":
 code = 0xFF
 subcode = 0x51
 fourbite = struct.pack('>L', event.tempo)
 threebite = fourbite[1:4] # Just discard the MSB
 varTime = writeVarLength(event.time)
 for timeByte in varTime:
 self.MIDIdata = self.MIDIdata + struct.pack('>B',timeByte)
 self.MIDIdata = self.MIDIdata + struct.pack('>B',code)
 self.MIDIdata = self.MIDIdata + struct.pack('>B',subcode)
 self.MIDIdata = self.MIDIdata + struct.pack('>B', 0x03)
 self.MIDIdata = self.MIDIdata + threebite

The event.type string (“Tempo”) was the one chosen in the processEventList
logic.

The code and sub-code are binary values that come from the MIDI
specification.

Next the data is packed into a three byte structure (or a four byte
structure, discarding the most significant byte). Again, the MIDI
specification determines the number of bytes used in the data payload.

All MIDI events begin with a time, which is stored in a slightly bizarre
variable-length format. This time should be converted to MIDI variable-length
data with the writeVarLength() function before writing to the stream.
In the MIDI standard’s variable length data only seven bits of a word are
used to store data; the eighth bit signifies if more bytes encoding the
value follow. The total length may be 1 to 3 bytes, depending upon the size of
the value encoded. The writeVarLength() function takes care of this
conversion for you.

Now the data is written to the binary object self.MIDIdata, which is
the actual MIDI-encoded data stream. As per the MIDI standard, first we
write our variable-length time value. Next we add the event type code and
sub-code. Then we write the length of the data payload, which in the case
of the tempo event is three bytes. Lastly, we write the actual payload,
which has been packed into the variable threebite.

The reason that there are separate classes for GenericEvent and MIDIEvent
is that there need not be a one-to-one correspondance. For example, the
code defines a Note object, but when this is processed in
processEventList() two MIDIEvent objects are created, one for
the note on event, one for the note off event.

if thing.type == 'note':
 event = MIDIEvent("NoteOn", thing.time * TICKSPERBEAT,
 thing.ord, thing.insertion_order)
 event.pitch = thing.pitch
 event.volume = thing.volume
 event.channel = thing.channel
 self.MIDIEventList.append(event)

 event = MIDIEvent("NoteOff", (thing.time+ thing.duration) * TICKSPERBEAT,
 thing.ord -0.1,
 thing.insertion_order)
 event.pitch = thing.pitch
 event.volume = thing.volume
 event.channel = thing.channel
 self.MIDIEventList.append(event)

Note that the NoteOff event is created with a slightly lower ordinality
than the NoteOn event. This is so that at any given time the note off
events will be processed before the note on events.

Write Some Tests

Yea, it’s a hassle, but you know it’s the right thing to do!

 Copyright 2016, Mark Conway Wirt.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	MIDIUtil 0.919 documentation

Class Reference

	
class midiutil.MidiFile.MIDIFile(numTracks=1, removeDuplicates=True, deinterleave=True, adjust_origin=None)

	A class that encapsulates a full, well-formed MIDI file object.

This is a container object that contains a header (MIDIHeader),
one or more tracks (class:MIDITrack), and the data associated with a proper
and well-formed MIDI file.

	
addControllerEvent(track, channel, time, controller_number, parameter)

	
	
addControllerEvent(self, track, channel, time, controller_number, parameter)

	Add a channel control event

	Parameters:	
	track – The track to which the event is added.

	channel – the MIDI channel to assign to the event. [Integer, 0-15]

	time – The time (in beats) at which the event is placed [Float].

	controller_number – The controller ID of the event.

	parameter – The event’s parameter, the meaning of which varies by event type.

	
addNote(track, channel, pitch, time, duration, volume, annotation=None)

	
	
addNote(self, track, channel, pitch, time, duration, volume, annotation=None)

	Add notes to the MIDIFile object

	Parameters:	
	track – The track to which the note is added.

	channel – the MIDI channel to assign to the note. [Integer, 0-15]

	pitch – the MIDI pitch number [Integer, 0-127].

	time – the time (in beats) at which the note sounds [Float].

	duration – the duration of the note (in beats) [Float].

	volume – the volume (velocity) of the note. [Integer, 0-127].

	annotation – Arbitrary data to attach to the note.

The annotation parameter attaches arbitrary data to the note. This
is not used in the code, but can be useful anyway. As an example,
I have created a project that uses MIDIFile to write
csound [http://csound.github.io/] orchestra files directly from the
class EventList.

	
addProgramChange(track, channel, time, program)

	
	
addProgramChange(self, track, channel, time, program)

	Add a MIDI program change event.

	Parameters:	
	track – The track to which program change event is added.

	channel – the MIDI channel to assign to the event. [Integer, 0-15]

	time – The time (in beats) at which the program change event is placed [Float].

	annotation – Arbitrary data to attach to the note.

	program – the program number. [Integer, 0-127].

	
addSysEx(track, time, manID, payload)

	
	
addSysEx(self, track, time, manID, payload)

	Add a System Exclusive event.

	Parameters:	
	track – The track to which the event should be written

	time – The time of the event.

	manID – The manufacturer ID for the event

	payload – The payload for the event. This should be a binary-packed
value, and will vary for each type and function.

Note: This is a low-level MIDI function, so care must be used in
constructing the payload. It is recommended that higher-level helper
functions be written to wrap this function and construct the payload if
a developer finds him or herself using the function heavily.

	
addTempo(track, time, tempo)

	
	
addTempo(self, track, time, tempo)

	Add notes to the MIDIFile object

	Parameters:	
	track – The track to which the tempo event is added.

	time – The time (in beats) at which tempo event is placed

	tempo – The tempo, in Beats per Minute. [Integer]

	
addTrackName(track, time, trackName)

	
	
addTrackName(self, track, time, trackName)

	Name a track.

	Parameters:	
	track – The track to which the name is assigned.

	time – The time (in beats) at which the track name event is placed.
In general this should probably be time 0 (the beginning of the track).

	trackName – The name to assign to the track [String]

	
addUniversalSysEx(track, time, code, subcode, payload, sysExChannel=127, realTime=False)

	
	
addUniversalSysEx(self, track, time, code, subcode, payload, sysExChannel=0x7F, realTime=False)

	Add a Univeral System Exclusive event.

	Parameters:	
	track – The track to which the event should be written

	time – The time of the event, in beats.

	code – The event code. [Integer]

	subcode – The event sub-code [Integer]

	payload – The payload for the event. This should be a binary-packed
value, and will vary for each type and function.

	sysExChannel – The SysEx channel.

	realTime – Sets the real-time flag. Defaults to non-real-time.

	manID – The manufacturer ID for the event

Note: This is a low-level MIDI function, so care must be used in
constructing the payload. It is recommended that higher-level helper
functions be written to wrap this function and construct the payload if
a developer finds him or herself using the function heavily. As an example
of such a helper function, see the changeNoteTuning() function,
which uses the event to create a real-time note tuning update.

	
changeNoteTuning(track, tunings, sysExChannel=127, realTime=True, tuningProgam=0)

	
	
changeNoteTuning(self, track, tunings, sysExChannel=0x7F, realTime=True, tuningProgam=0):

	Add a real-time MIDI tuning standard update to a track.

	Parameters:	
	track – The track to which the tuning is applied.

	tunings – A list to tuples representing the tuning. See below for an
explanation.

	sysExChannel – The SysEx channel of the event. This is mapped to “manufacturer ID”
in the event which is written. Unless there is a specific reason for changing it, it
should be left at its default value.

	realTime – Speicifes if the Universal SysEx event should be flagged as real-time or
non-real-time. As with the sysExChannel argument, this should in general
be left at it’s default value.

	tuningProgram – The tuning program number.

This function specifically implements the “real time single note tuning
change” (although the name is misleading, as multiple notes can be included in
each event). It should be noted that not all hardware or software implements the
MIDI tuning standard, and that which does often does not implement it in its
entirety.

The tunings argument is a list of tuples, in (note number, frequency) format.
As an example, if one wanted to change the frequency on MIDI note 69 to 500 (it is normally
440 Hz), one could do it thus:

from midiutil.MidiFile import MIDIFile
MyMIDI = MIDIFile(1)
tuning = [(69, 500)]
MyMIDI.changeNoteTuning(0, tuning, tuningProgam=0)

	
changeTuningBank(track, channel, time, bank)

	
	
changeTuningBank(self, track, channel, time, bank)

	Change the tuning bank for a selected track

	Parameters:	
	track – The track to which the data should be written

	channel – The channel for the events

	time – The time of the events

	bank – The tuning bank (0-127)

Note that this is a convenience function, as the same functionality is available
from directly sequencing controller events.

The specified tuning should already have been written to the stream with changeNoteTuning.

	
changeTuningProgram(track, channel, time, program)

	
	
changeTuningProgram(self, track, channel, time, program)

	Change the tuning program for a selected track

	Parameters:	
	track – The track to which the data should be written

	channel – The channel for the events

	time – The time of the events

	program – The tuning program number (0-127)

Note that this is a convenience function, as the same functionality is available
from directly sequencing controller events.

The specified tuning should already have been written to the stream with changeNoteTuning.

	
makeNRPNCall(track, channel, time, controller_msb, controller_lsb, data_msb, data_lsb)

	
	
makeNRPNCall(self, track, channel, time, controller_msb, controller_lsb, data_msb, data_lsb)

	Perform a Non-Registered Parameter Number Call

	Parameters:	
	track – The track to which this applies

	channel – The channel to which this applies

	time – The time of the event

	controller_msb – The Most significant byte of the controller. In common usage
this will usually be 0

	controller_lsb – The least significant byte for the controller message. For example, for
a fine-tunning change this would be 01.

	data_msb – The most significant byte of the controller’s parameter.

	data_lsb – The least significant byte of the controller’s parameter. If none is needed this
should be set to None

	
makeRPNCall(track, channel, time, controller_msb, controller_lsb, data_msb, data_lsb)

	
	
makeRPNCall(self, track, channel, time, controller_msb, controller_lsb, data_msb, data_lsb)

	Perform a Registered Parameter Number Call

	Parameters:	
	track – The track to which this applies

	channel – The channel to which this applies

	time – The time of the event

	controller_msb – The Most significant byte of the controller. In common usage
this will usually be 0

	controller_lsb – The Least significant Byte for the controller message. For example, for
a fine-tuning change this would be 01.

	data_msb – The Most Significant Byte of the controller’s parameter.

	data_lsb – The Least Significant Byte of the controller’s parameter. If non needed this
should be set to None

As an example, if one were to change a channel’s tuning program:

makeRPNCall(track, channel, time, 0, 3, 0, program)

(Note, however, that there is a convenience function, changeTuningProgram, that does
this for you.)

	
writeFile(fileHandle)

	
	
writeFile(self, fileHandle)

	Write the MIDI File.

	Parameters:	fileHandle – A file handle that has been opened for binary writing.

 Copyright 2016, Mark Conway Wirt.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	MIDIUtil 0.919 documentation

Index

 A
 | C
 | M
 | W

A

 	

 	addControllerEvent() (midiutil.MidiFile.MIDIFile method)

 	addNote() (midiutil.MidiFile.MIDIFile method)

 	addProgramChange() (midiutil.MidiFile.MIDIFile method)

 	addSysEx() (midiutil.MidiFile.MIDIFile method)

 	

 	addTempo() (midiutil.MidiFile.MIDIFile method)

 	addTrackName() (midiutil.MidiFile.MIDIFile method)

 	addUniversalSysEx() (midiutil.MidiFile.MIDIFile method)

C

 	

 	changeNoteTuning() (midiutil.MidiFile.MIDIFile method), [1]

 	changeTuningBank() (midiutil.MidiFile.MIDIFile method), [1]

 	

 	changeTuningProgram() (midiutil.MidiFile.MIDIFile method), [1]

M

 	

 	makeNRPNCall() (midiutil.MidiFile.MIDIFile method)

 	makeRPNCall() (midiutil.MidiFile.MIDIFile method)

 	MIDIFile (class in midiutil.MidiFile)

 	MIDIFile.addControllerEvent() (in module midiutil.MidiFile)

 	MIDIFile.addNote() (in module midiutil.MidiFile), [1]

 	MIDIFile.addProgramChange() (in module midiutil.MidiFile), [1]

 	MIDIFile.addSysEx() (in module midiutil.MidiFile)

 	MIDIFile.addTempo() (in module midiutil.MidiFile), [1]

 	

 	MIDIFile.addTrackName() (in module midiutil.MidiFile), [1]

 	MIDIFile.addUniversalSysEx() (in module midiutil.MidiFile)

 	MIDIFile.changeTuningBank() (in module midiutil.MidiFile), [1]

 	MIDIFile.changeTuningProgram() (in module midiutil.MidiFile), [1]

 	MIDIFile.makeNRPNCall() (in module midiutil.MidiFile)

 	MIDIFile.makeRPNCall() (in module midiutil.MidiFile)

 	MIDIFile.writeFile() (in module midiutil.MidiFile), [1]

W

 	

 	writeFile() (midiutil.MidiFile.MIDIFile method)

 Copyright 2016, Mark Conway Wirt.
 Created using Sphinx 1.3.5.

 _static/comment.png

search.html

 Navigation

 		
 index

 		MIDIUtil 0.919 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Mark Conway Wirt.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/up.png

_static/down.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/comment-close.png

